RESEARCH ARTICLE

OPEN ACCESS

TNM Method Results Compared with Finite Element Analysis for a 30 KW SCIM Motor

A. Ravi Prasad, Dr. K Prahlada Rao

Retired Scientific Officer (F), Bhabha Atomic Research Centre, Trombay, Mumbai-40085 Former In-charge Head, Department of Nuclear Energy, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat Professor, Department of Mechanical Engineering, JNTUA College of Engineering Anantapur- 515002 India

Abstract

The Thermal network model (TNM) of ten node 37 thermal resistances is considered as the highly detailed one for thermal distribution of all the TNM models. This model is reported to be the one that can take care of most of the complexities in geometry and estimation of convective heat transfer coefficients. Results obtained for the 30 KW motor using the above TNM model have been compared with that of Finite element Analysis using ANSYS. Listing of the MATLAB programs is presented as annexure.

I. INTRODUCTION

The standard 10 node thirty seven TNM by Mellor and Turner [7] has been used to model the 30 KW motor the details of which are given in the table 1.

II. THERMAL RESISTANCE ESTIMATION OF MOTOR COMPONENTS

Thermal network model consist of 10 nodes such as 1-Frame, 2-Stator Yoke,3-Stator Teeth,4-Stator Winding,5-Air Gap,6-End Winding,7-End Cap Air,8-Rotor Winding,9-Rotor Iron,10-Shaft

Fig. 1 - The 10 node TNM model of SCIM motor

A. FRAME	
$R_1 = \frac{1}{A_1 - A_2}$	(1)
Aframe "1	

$$R_2 = \frac{1}{\pi h_{conv} L r_1}$$
(2)

TABLE I		
DETAILS OF 30 KW MOTOR	[1]	l

	DEIII	LD OI 50	11 // 1/10	51000[1]	
Power	30	Connect	delta	Core	207
	KW	ion		length	
Air	0.80	Rotor	213	Stator	334
gap		diamete		diameter	
		r			
η	0.927	Rated	1450	Rated	98.8
		speed	rpm	torque	Nm
Rotor	43	Stator	48	Voltage	660/3
slots		slots		(Line/Ph	98.3
)	V
Locati	Stator	Stator	Stato	Rotor	Rotor
on of	core	teeth	r	bar	core
loss			wind		
			ing		
Loss	467	165.40	738.	563	89.4
(Watts			2		
)					

B. STATOR YOKE / STATOR BACK IRON

1

FIG. 3 STATOR BACK IRON

FIGURE – 4 STATOR TEETH

$$R_{7} = \frac{L^{*}P_{t}}{6^{*}\pi^{*}k_{la}^{*}W_{t}^{*}(r_{2}^{2} - r_{3}^{2})} \dots (7)$$

$$R_{8} = \frac{\pi^{*}W_{t}^{*}(r_{2}^{2} - r_{3}^{2})}{k_{lr}^{*}L^{*}s^{*}p_{t}^{*}(r_{2} - r_{3}^{2})^{2}*n^{2}} \dots (8)$$

	E. AIR GAP
$R_{9} = (-1)^{*} \left \frac{r_{2}^{2} + r_{3}^{2} - \frac{[4^{*}r_{2}^{2} * r_{3}^{2} * \ln(\frac{72}{2})]}{r_{3}}}{4^{*}\pi^{*}k_{lr}^{*}L^{*}s^{*}W_{l}^{*}(r_{2}^{2} - r_{3}^{2})} \right $ (0)	R 3 4 R ₁₆ R ₁₇
$R_{10} = \frac{P_t}{(2^*\pi^*k_{lr}^*s^*L^*W_t)} \left[1 - \left[\frac{[2^*r_3^{2^*}\ln(r_2/r_3)]}{(r_2^2 - r_3^2)} \right] \right]$ (10)	R ₁₈
$R_{11} = \frac{P_t}{(2*\pi^*k_{lr}*s*L^*W_t)} \left[\left[\frac{[2*r_2^2*\ln(r_2/r_3)]}{(r_2^2-r_3^2)} \right] - 1 \right]$	Fig. 6 AIR GAP
(11) 3 2 R_{12} R_{13} G G R_{14} R_{15} T T T T T T T T	$R_{16} = \frac{P_{t}}{W_{t} * \pi * r_{3} * 1 * h_{2r} * [h_{2s}]} \dots $
$R_{12} = \frac{2^{*}t_{i}}{(\pi^{*}k_{i}^{*}L^{*}r_{4}^{*}n)} + \frac{1}{(2^{*}\pi^{*}k_{v}^{*}L^{*}f_{r}^{*}n)} \dots (12)$	
$R_{13} = \frac{L}{(6^* k * A * n)}$	FIGURE -7 END WINDING
$R_{14} = \frac{4^{*}t_{i}}{(\pi^{*}k_{i}^{*}L^{*}r_{4}^{*}n)} + \frac{1}{(\pi^{*}k_{v}^{*}L^{*}f_{r}^{*}n)} \dots \dots$	$R_{19} = \frac{l_o * w}{(n * A_{sc} * k_c)} \qquad(19)$ $R_{20} = \frac{w}{(16 * \pi^2 * r_t * fr * k_v)} \qquad(20)$
	* 2

G. END CAP AIR

The circulating air in the end cap is assumed to have a uniform temperature. A single film coefficient is used to describe the convective heat transfer from all surfaces.

The contact area offered by the end winding toroidal model is increased by 50% to allow for surface irregularities and the greater area of the flatter structure of a true end winding.

$$R_{27} = \frac{1}{A_{s6} * h_{3r} [* h_{3s}]}$$
(27)

H. ROTOR WINDING

$$R_{28} = \frac{L}{[6^*\pi^*k_a^*(r_5^2 - r_8^2)]} + \frac{l_e}{[\pi^*k_a^*(r_5^2 - r_7^2)]} \dots (28)$$

$$R_{29} = (-1)^{*} \left[\frac{\frac{[4^{*}r_{5}^{2} * r_{8}^{2} * \ln(\frac{r_{5}}{5})]}{r_{8}}}{\frac{(r_{5}^{2} - r_{8}^{2})}{4^{*}\pi^{*}k_{a}^{*}L^{*}(r_{5}^{2} - r_{8}^{2})}} \right]_{.(29)}$$

$$R_{30} = \frac{1}{(2^*\pi^*k_a^*L)} \left[1 - \left[\frac{[2^*r_8^{2^*} \ln(r_5/r_8)]}{(r_5^{2^*} - r_8^{2^*})} \right] \right].$$
(30)

FIG. 9 ROTOR WINDING

Fig. 10 ROTOR IRON

$$R_{31} = \frac{1}{(2*\pi^*k_a*L)} \left[\left[\frac{[2*r_5^{-2}*\ln(r_5/r_8)]}{(r_5^{-2}-r_8^{-2})} \right] - 1 \right] \dots (31)$$

$$R_{32} = \frac{L}{6*\pi * k_a (r_8^2 - r_9^2)} \qquad \dots (32)$$

www.ijera.com

25 | P a g e

A. Ravi Prasad Int. Journal of Engineering Research and Applications ISSN: 2248-9622, Vol. 5, Issue 10, (Part - 1) October 2015, pp.22-31

$R_{33} = (-1)^*$	$\frac{r_8^2 + r_9^2 - \frac{[4*r_8^2*r_9^2*\ln(\frac{r_8}{r_9})]}{(r_8^2 - r_9^2)}}{4*\pi * k_{lr} * s * L * (r_8^2 - r_9^2)}$
-------------------	---

.....(33)

$$R_{34} = \frac{1}{(2*\pi*k_{lr}*s*L)} \left[1 - \left[\frac{[2*r_9^2*\ln(r_8/r_9)]}{(r_8^2 - r_9^2)} \right] \right] \dots (34)$$
$$R_{35} = \frac{1}{(2*\pi*k_{lr}*L*s)} \left[\left[\frac{[2*r_8^2*\ln(r_8/r_9)]}{(r_8^2 - r_9^2)} \right] - 1 \right] \dots (35)$$

I. SHAFT

FIG. 11 SHAFT

TABLE II
LIST OF SYMBOLS

Symbols		Name
R _e	Ohm	Electrical Resistance
		(suffix s for stator and r for
		rotor)
Ι	Amp.	Current
	$W/(m^2.K)$	Free convection heat
		transfer coefficient

	1	
		between frame and
	2	ambient
h _{2r}	$W/(m^2.K)$	Rotating air-gap film coefficient
h _{2s}	W/(m ² .K)	stationary air-gap film
h _{3r}	W/(m ² .K)	Rotating end cap film
h _{3s}	W/(m ² .K)	Stationary end cap film
k _{la}	W/(m.K)	Lamination axial
k.	W/(m K)	conductivity Lamination radial iron
TT I		conductivity
K′	W/(m.K)	Equivalent thermal conductivity
k _c	W/(m.K)	Copper conductivity
ki	W/(m.K)	Slot liner conductivity
k _v	W/(m.K)	Varnish conductivity
ka	W/(m.K)	Aluminium conductivity
K.	W/(m.K)	Shaft steel conductivity.
Acum	mm ²	Half of frame area
Δ	mm ²	Slot Area
Δ	mm ²	Copper wire area
Δ	mm ²	Varnish area
Λ	mm ²	Copper gross saction in
A _{Sc}	11111	slots
L	m	Stator length
l_0	m	Slot winding overhang
h _{cont}	m	Frame-core contact coefficient
r ₁	m	Stator outer radius
r ₂	m	Tooth outer radius
r ₂	m	Tooth inner radius
r,	m	Equivalent winding radius
r _c	m	Rotor outer radius
r ₆	m	End winding cross section
r_	m	End ring inner radius
r,	m	Equivalent rotor winding
18		radius
r _t	m	End winding toroid radius
t _i	m	Insulation thickness
Pt	m	Tooth pitch
W _t	m	Stator tooth width
n		Number of slots
W		Hot spot to mean temperature ratio
f _r		Radial conductivity factor
le le	mm	End ring width
l _b	mm	Bearing housing width
l _m	mm	Distance of the bearing
•		Centre to rotor mean
A _{s1}		Surface area of end cap
A _{S2}	mm ⁻ 2	Surface area of stator iron
A _{S3}	mm ²	Surface area of stator teeth,
A _{S4}	mm ²	Surface area of end
	2	winding
A _{S5}	mm [∠]	Surface area of rotor end-

FIG. 11 - TNM MODEL OF 10 NODES

TABLE III Thermal Resistance Description of 10 Node TNM Model

Resist.	(K/W)	Description
ance		Description
1-	FRAME	
P1	0.0567	Thermal resistance from frame to
K1	0.0307	ambient
D)	0.0228	Badial tharmal resistance from
K 2	0.0228	frame to stator voke
2	STATO	PACK IDON/CODE
2- D2	51A101	A mini thermal mainteness from
K3	0.2658	stator yoke to end cap air
R4	-	Radial interconnecting thermal
	0.0015	resistance of the stator yoke
R5	0.0042	Radial thermal resistance from
		the stator yoke to frame
R6	0.0049	Radial thermal resistance from
		the stator yoke to stator teeth
3-	STATO	RTEETH
R7	0.8185	Axial thermal resistance from
		stator teeth to end cap air
R8	0.0008	Radial/circumferential thermal
		resistance from stator teeth to
		stator winding
R9	-0.003	Radial interconnecting thermal
-		resistance of the stator teeth
R10	0.0086	Radial thermal resistance from
-		the stator teeth to stator voke
R11	0.0100	Radial thermal resistance from
		the stator teeth to air gap
4-	STATO	R WINDING
R12	0.0127	Radial/circumferential thermal
		resistance from the stator coils to
		stator teeth
R13	0.0094	Axial thermal resistance from the
_		stator coils to end-winding
R14	0.0254	Radial thermal resistance from
		the stator coils to stator voke
R15	0.0160	Radial thermal resistance from
		the stator coils to air gap
5-	AIR GA	P
R16	0.2958	Radial thermal resistance from
-		the air gap to stator teeth
R17	0.2958	Radial thermal resistance from
		the air gap to stator coils
R18	0.1490	Radial thermal resistance from
-		the air gap to rotor bars
6-	END WI	NDING
R19	0.0102	Axial thermal resistance from the
	0.0102	end-winding to stator coils
R20	0.0392	Thermal resistance from the end-
1120	0.0372	merman resistance morn the end-

27 | P a g e

A. Ravi Prasad Int. Journal of Engineering Research and Applications ISSN: 2248-9622, Vol. 5, Issue 10, (Part - 1) October 2015, pp.22-31

www.ijera.com

R21winding to end cap airR210.2522Thermal resistance from the end-winding to end cap air7-END CAP AIRR220.0455Axial thermal resistance from the end cap air to frameR230.3716Axial thermal resistance from the end cap air to stator yokeR241.2088Thermal resistance from the end cap air to stator teethR250.0614Thermal resistance from the end cap air to rotor end-ringsR261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor iron8ROTOR WINDINGR280.0387Axial thermal resistance from the end cap air to rotor iron8.ROTOR WINDINGR29-R310.0003Radial interconnecting thermal 0.0001resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.4235Axial thermal resistance from the rotor iron the rotor bars to rotor iron9.ROTOR IRONR33-R340.0095Radial interconnecting thermal 0.0037resistance of the rotor ironR340.0138Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to rotor barsR360.2158Radial thermal resistance from the rotor iron the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to roto			
R210.2522Thermal resistance from the end-winding to end cap air7-END CAP AIRR220.0455Axial thermal resistance from the end cap air to frameR230.3716Axial thermal resistance from the end cap air to stator yokeR241.2088Thermal resistance from the end cap air to stator teethR250.0614Thermal resistance from the end cap air to stator teethR261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor or end-ringsR270.7870Thermal resistance from the end cap air to rotor iron8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal 0.0001resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor iron9-ROTOR IFONR33-Radial interconnecting thermal rotor iron the rotor iron to end cap airR33-Radial interconnecting thermal resistance from the rotor iron to end cap airR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.138Radial thermal resistance from the rotor iron to rotor barsR360.2158Radial thermal resistance from the rotor iron to shaft10-SHAFTImage: Stance from the rotor iron to shaft to rotor ironR370.2760Axial thermal resista			winding to end cap air
winding to end cap air7-END CAP AIRR220.0455Axial thermal resistance from the end cap air to frameR230.3716Axial thermal resistance from the end cap air to stator yokeR241.2088Thermal resistance from the end cap air to stator teethR250.0614Thermal resistance from the end cap air to end-windingR261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor ord8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal 0.0001 resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0033Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR33-Radial interconnecting thermal o.0037 resistance of the rotor barsR33-Radial interconnecting thermal rotor iron to end cap airR340.0095Radial thermal resistance from the rotor ironR350.0138Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R21	0.2522	Thermal resistance from the end-
7.END CAP AIRR220.0455Axial thermal resistance from the end cap air to frameR230.3716Axial thermal resistance from the end cap air to stator yokeR241.2088Thermal resistance from the end cap air to stator teethR250.0614Thermal resistance from the end cap air to end-windingR261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor iron8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal 0.0001 resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal o.0037 resistance of the rotor barsR350.0138Radial thermal resistance from the rotor iron to orotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to rotor iron			winding to end cap air
R220.0455Axial thermal resistance from the end cap air to frameR230.3716Axial thermal resistance from the end cap air to stator yokeR241.2088Thermal resistance from the end cap air to stator teethR250.0614Thermal resistance from the end cap air to end-windingR261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor iron8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal o.0037R340.095Radial interconnecting thermal resistance of the rotor ironR350.0138Radial thermal resistance from the rotor iron to end cap airR360.2158Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to rotor iron	7-	END CA	PAIR
R23end cap air to frameR230.3716Axial thermal resistance from the end cap air to stator yokeR241.2088Thermal resistance from the end cap air to stator teethR250.0614Thermal resistance from the end cap air to end-windingR261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor iron8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal rotor iron to end cap airR33-Radial interconnecting thermal rotor iron to end cap airR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTItermal resistance from the the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R22	0.0455	Axial thermal resistance from the
R230.3716Axial thermal resistance from the end cap air to stator yokeR241.2088Thermal resistance from the end cap air to stator teethR250.0614Thermal resistance from the end cap air to end-windingR261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor iron 8- ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal 0.0001R300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor iron to end cap air9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to rotor iron			end cap air to frame
R24I.2088Thermal resistance from the end cap air to stator teethR250.0614Thermal resistance from the end cap air to end-windingR261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor iron8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal o.0001R310.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor iron to end cap air9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor iron8.33-Radial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTImage: Stance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to rotor iron	R23	0.3716	Axial thermal resistance from the
R241.2088Thermal resistance from the end cap air to stator teethR250.0614Thermal resistance from the end cap air to end-windingR261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor iron 8-ROTOR WINDING R280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal o.00010.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron 9-ROTOR IRON R320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal o.0037R340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft 10-SHAFT R360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings			end cap air to stator yoke
R250.0614Thermal resistance from the end cap air to end-windingR261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor iron8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal 0.00010.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal esistance of the rotor iron8.33-Radial thermal resistance from the rotor bars to rotor iron8.430.0095Radial interconnecting thermal rotor iron to end cap airR340.0095Radial interconnecting thermal resistance of the rotor ironR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R24	1.2088	Thermal resistance from the end
R250.0614Thermal resistance from the end cap air to end-windingR261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor iron8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal 0.00010.0001resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal notor iron to end cap airR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings			cap air to stator teeth
R261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor iron8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-R340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R25	0.0614	Thermal resistance from the end
R261.1002Thermal resistance from the end cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor iron8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal o.00010.0001resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor iron8.340.0095Radial thermal resistance from the rotor iron to end cap airR340.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings			cap air to end-winding
R27cap air to rotor end-ringsR270.7870Thermal resistance from the end cap air to rotor iron8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal 0.00010.0001resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R26	1.1002	Thermal resistance from the end
R270.7870Thermal resistance from the end cap air to rotor iron8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal 0.00010.0001resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor iron8.340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings			cap air to rotor end-rings
cap air to rotor iron8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal notor iron to end cap airR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R27	0.7870	Thermal resistance from the end
8-ROTOR WINDINGR280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal o.0001R300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings			cap air to rotor iron
R280.0387Axial thermal resistance from the rotor bars to end cap airR29-Radial interconnecting thermal o.0001R300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	8-	ROTOR	WINDING
R29-Radial interconnecting thermal resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R28	0.0387	Axial thermal resistance from the
R29-Radial interconnecting thermal resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings			rotor bars to end cap air
0.0001resistance of the rotor barsR300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R29	-	Radial interconnecting thermal
R300.0003Radial thermal resistance from the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal o.0037R340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings		0.0001	resistance of the rotor bars
the rotor bars to air gapR310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal 0.0037R340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R30	0.0003	Radial thermal resistance from
R310.0003Radial thermal resistance from the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal o.0037R340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings			the rotor bars to air gap
the rotor bars to rotor iron9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R31	0.0003	Radial thermal resistance from
9-ROTOR IRONR320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings			the rotor bars to rotor iron
R320.4235Axial thermal resistance from the rotor iron to end cap airR33-Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	9-	ROTOR	IRON
R33-Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R32	0.4235	Axial thermal resistance from the
R33- 0.0037Radial interconnecting thermal resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings			rotor iron to end cap air
0.0037resistance of the rotor ironR340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R33	-	Radial interconnecting thermal
R340.0095Radial thermal resistance from the rotor iron to rotor barsR350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings		0.0037	resistance of the rotor iron
R350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R34	0.0095	Radial thermal resistance from
R350.0138Radial thermal resistance from the rotor iron to shaft10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings			the rotor iron to rotor bars
10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R35	0.0138	Radial thermal resistance from
10-SHAFTR360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings			the rotor iron to shaft
R360.2158Radial thermal resistance from the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	10-	SHAFT	
the shaft to rotor ironR370.2760Axial thermal resistance from the shaft to frame through bearings	R36	0.2158	Radial thermal resistance from
R37 0.2760 Axial thermal resistance from the shaft to frame through bearings			the shaft to rotor iron
shaft to frame through bearings	R37	0.2760	Axial thermal resistance from the
share to frame anough bearings			shaft to frame through bearings

TABLE IV TEMPERATURE DISTRIBUTION AND HEAT FLOWS - 10 NODE TNM MODEL

Heat input values: Watts				
	Additional loss	298.0		
467.0	Mechanical loss	76.0		
619.0	Rotor copper loss	563.0		
es at al	l the nodes are g	iven in		
Frame	NODE 2: Stato	r yoke		
	(74.50)			
	467.0 619.0 es at al Frame	ralues: Watts Additional loss 467.0 Mechanical loss 619.0 Rotor copper loss es at all the nodes are g Frame NODE 2: Stato (74.50)		

Node 10 to	116.41	Heat flows from	290.18
node 1		node 3 to Node 2	
Node 2 to	670.28	Heat flows from	157.36
node 1		node 4 to Node 2	
Node 10 to	224.81	Heat flows from	72.56
node 1		node 5 to Node 2	
No heat ger	neration at	Heat generation	233.50
node 1		at node 2	
		HEAT GOES OU	JT TO
All these	-993.85	Node 7	-10.76
heat			
quantities			
go to			
ambient			
		Node 1	-670.28
NODE 3: St	ator teeth	NODE 4:Stator	winding
(77.11)		(79.13)	8
HEAT		HEAT FLOWS	
FLOWS		FROM	
FROM			
Heat flows	144.51	From node 6	34.29
from node 4			•
Heat flows	67.63	From node 5	59.41
from node 5	0,100	110111100000	0,111
Heat flows		Heat flows out	
out to		to	
To Node 2	-290.18	Flows out to	-144 51
10110002	270.10	node 3	111.51
To Node 7	-4 66	Flows out to	-157 36
101100007	1.00	node 2	157.50
Heat			200.16
	82 70	Heat generated	20X 16
generated	82.70	Heat generated at node 4	208.16
generated	82.70	Heatgeneratedat node 4Node6:End	208.16
generated NODE 5: (97 32)	82.70 Air gap	Heatgeneratedat node 4Node6:End(79 75)	winding
near generated NODE 5: (97.32)	82.70 Air gap	Heat generated at node 4 A Node 6: End (79.75) Feat generated	208.16 winding
note a generated NODE 5: (97.32) flows out to node 3	82.70 Air gap -67.63	Heat generated at node 4 Image: second seco	208.16 winding 160.94
generated NODE 5: (97.32) flows out to node 3 flows out to	82.70 Air gap -67.63	Heatgeneratedat node 4Node6:End(79.75)Heatgeneratedat node 6Elow to node 4	208.16 winding 160.94
generated NODE 5: (97.32) flows out to node 3 flows out to node 4	82.70 Air gap -67.63 -59.41	Heatgeneratedat node 4Node6:End(79.75)Heatgeneratedat node 6Flow to node 4	208.16 winding 160.94 -34.29
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows	82.70 Air gap -67.63 -59.41	Heat generated at node 4 Node 6: End (79.75) Heat generated at node 6 Flow to node 4 Elows to node 7	208.16 winding 160.94 -34.29
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8	82.70 Air gap -67.63 -59.41 127.05	Heatgeneratedat node 4Node6:End(79.75)HeatHeatgeneratedat node 6Flow to node 4Flows to node 7	208.16 winding 160.94 -34.29 -126.65
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: FI	82.70 Air gap -67.63 -59.41 127.05 ad cap air	Heatgeneratedat node 4Node6:End(79.75)HeatHeatgeneratedat node 6Flow to node 4Flows to node 7NODE8: Roto	208.16 winding 160.94 -34.29 -126.65 r bars
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66)	82.70 Air gap -67.63 -59.41 127.05 nd cap air	Heatgeneratedat node 4Node6:End(79.75)HeatHeatgeneratedat node 6Flow to node 4Flows to node 7NODE8:Rotor(116.42)	208.16 winding 160.94 -34.29 -126.65 r bars
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914	Heat generated at node 4 Node 6: End (79.75) Heat Heat generated at node 6 Flow to node 4 Flows to node 7 NODE NODE 8:Rotor (116.42) Heat flow out to	208.16 winding 160.94 -34.29 -126.65 r bars -127.05
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 8	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914	Heat generated at node 4 Node 6: End (79.75) Heat generated at node 6 Flow to node 4 Flows to node 7 NODE 8:Rotor (116.42) Heat flow out to node 5	208.16 winding 160.94 -34.29 -126.65 r bars -127.05
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 8 Heat flow	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914 10.76	Heat generated at node 4 Node 6: End (79.75) Heat generated at node 6 Flow to node 4 Flows to node 7 NODE 8:Rotor (116.42) Heat flow out to node 5 Heat flow out to	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 8 Heat flow from node 8	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914 10.76	Heatgeneratedat node 4Node 6: End(79.75)Heatgeneratedat node 6Flow to node 4Flows to node 7NODE8:Rotor(116.42)Heat flow out tonode 5Heat flow out tonode 7	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 8 Heat flow from node 2 Heat flow	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914 10.76 4.66	Heatgeneratedat node 4Node6:End(79.75)Heatgeneratedat node 6Flow to node 4Flows to node 7NODE8:Rotor(116.42)Heat flow out tonode 5Heat flow out tonode 7Heat flow out tonode 7	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914 -111.54
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 8 Heat flow from node 2 Heat flow from node 2	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914 10.76 4.66	Heatgeneratedat node 4Node6:End(79.75)HeatHeatgeneratedat node 6Flow to node 4Flows to node 7NODE8:Rotor(116.42)Heat flow out tonode 5Heat flow out tonode 7Heat flow out tonode 9	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914 -111.54
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 8 Heat flow from node 2 Heat flow from node 3 Heat flow	82.70 Air gap -67.63 -59.41 127.05 ad cap air 42.914 10.76 4.66 126.65	Heat generated at node 4 Node 6: End (79.75) Heat generated at node 6 Flow to node 4 Flows to node 7 NODE 8:Roto (116.42) Heat flow out to node 5 Heat flow out to node 7 Heat flow out to node 9 Heat generated	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914 -111.54 281.50
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 8 Heat flow from node 2 Heat flow from node 3 Heat flow from node 3	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914 10.76 4.66 126.65	Heatgeneratedat node 4Node6:End(79.75)HeatHeatgeneratedat node 6Flow to node 4Flows to node 7NODE8:Rotor(116.42)Heat flow out tonode 5Heat flow out tonode 7Heat flow out tonode 9Heat generated	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914 -111.54 281.50
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 8 Heat flow from node 2 Heat flow from node 3 Heat flow from node 3 Heat flow	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914 10.76 4.66 126.65 39.83	Heatgeneratedat node 4Node6:End(79.75)HeatHeatgeneratedat node 6Flow to node 4Flows to node 7NODE8:Rotor(116.42)Heat flow out tonode 5Heat flow out tonode 7Heat flow out tonode 9Heat generated	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914 -111.54 281.50
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 8 Heat flow from node 2 Heat flow from node 3 Heat flow from node 3 Heat flow from node 6 Heat flow	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914 10.76 4.66 126.65 39.83	Heatgeneratedat node 4Node6:End(79.75)HeatHeatgeneratedat node 6Flow to node 4Flows to node 7NODE8:Rotor(116.42)Heat flow out tonode 5Heat flow out tonode 7Heat flow out tonode 9Heat generated	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914 -111.54 281.50
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 8 Heat flow from node 2 Heat flow from node 3 Heat flow from node 3 Heat flow from node 6 Heat flow from node 6 Heat flow	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914 10.76 4.66 126.65 39.83 224.81	Heatgeneratedat node 4Node6:End(79.75)HeatHeatgeneratedat node 6Flow to node 4Flows to node 7NODE8:Rotor(116.42)Heat flow out tonode 5Heat flow out tonode 7Heat flow out tonode 9Heat generated	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914 -111.54 281.50
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 8 Heat flow from node 2 Heat flow from node 3 Heat flow from node 3 Heat flow from node 6 Heat flow from node 6 Heat flow from node 9 Heat flow from node 9	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914 10.76 4.66 126.65 39.83 -224.81	Heatgenerated at node 4Node6:End (79.75)Heatgenerated at node 6Flow to node 4Flows to node 7NODE8:Rotor (116.42)Heat flow out to node 5Heat flow out to node 7Heat flow out to node 9Heat generated	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914 -111.54 281.50
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 2 Heat flow from node 3 Heat flow from node 3 Heat flow from node 6 Heat flow from node 9 Heat flow	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914 10.76 4.66 126.65 39.83 -224.81	Heat generated at node 4 Node 6: End (79.75) Heat generated at node 6 Flow to node 4 Flows to node 7 NODE 8:Rotor (116.42) Heat flow out to node 5 Heat flow out to node 7 Heat flow out to node 9 Heat generated	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914 -111.54 281.50
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 2 Heat flow from node 3 Heat flow from node 3 Heat flow from node 6 Heat flow from node 9 Heat flow	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914 10.76 4.66 126.65 39.83 -224.81	Heat generated at node 4 Node 6: End (79.75) Heat generated at node 6 Flow to node 4 Flows to node 7 NODE 8:Roto (116.42) Heat flow out to node 5 Heat flow out to node 7 Heat flow out to node 9 Heat generated	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914 -111.54 281.50
generated NODE 5: (97.32) flows out to node 3 flows out to node 4 Heat flows from node 8 NODE 7: En (67.66) Heat flow from node 8 Heat flow from node 8 Heat flow from node 3 Heat flow from node 6 Heat flow from node 6 Heat flow from node 9 Heat flow out to node 1 Heat Heat	82.70 Air gap -67.63 -59.41 127.05 nd cap air 42.914 10.76 4.66 126.65 39.83 -224.81 0.0	Heat generated at node 4 Node 6: End (79.75) Heat generated at node 6 Flow to node 4 Flows to node 7 NODE 8:Rotor (116.42) Heat flow out to node 5 Heat flow out to node 7 Heat flow out to node 9 Heat generated	208.16 winding 160.94 -34.29 -126.65 r bars -127.05 -42.914 -111.54 281.50

NODE 9: Rotor Iron (115.75)			
Heat flow	42.914	Heat flow from	39.83
from node 8		node 9	
Heat flow	10.76	Heat flow out to	-224.81
from node 2		node 1	
Heat flow	4.66	Heat generated	0.0
from node 3		_	
Heat flow	126.65		
from node 6			
NODE 10: Shaft (89.49)			
Heat to	116.41	Heat from node 9	-116.41
node 1			
No heat generation			

REFERENCES

- PH Mellor, D Roberts, DR Turner, Lumped parameter thermal model for electrical IEE PROCEEDINGS-B/ Vol. 138, No. 5, 1/205-218/machines of TEFC design 1991 SEPTEMBER 1991
- [2] Popove Lyudmila, Combined electromagnetic and thermal design platform for totally enclosed induction motors, MASTER'S THESIS
- [3] ANSYS manual

% ANNEXTURE - MATLAB program

f2 = fopen('motor10nodes.txt','w');

%% All dimensions are in meter %%

www.ijera.com

%% Stator length and Stator outer radius %% length=0.2066; ra1 = 0.169 %% Tooth outer radius and Tooth inner radius %% ra2 = 0.1351: ra3 = 0.1075%% Winding radius and Rotor outer radius %% ra4 = 0.0085718; ra5 = 0.1067 %% End winding cross section radius %% ra6 = 0.0273%% End disk inner radius %% ra7 = 0.0889%% Equivalent rotor winding radius %% ra8 = 0.0975%% Shaft radius and Frame radius %% ra9 = 0.05510; raframe = ra1 + 0.02%% End-winding toroid radius and No. of Slots %% rat = (ra2 + ra3)/2;n = 48 %% Tooth pitch and Insulation Thickness %% pt = 0.0106; ti = 0.0005%% End Winding length or Slot winding over hang lew = 0.025; lo=lew%% distance of rotor centre to bearing centre %% lm = 0.15;%% Bearing length and End cap length %% lb = 0.025: lendcap = 0.1281:%% Length of Frame %% lframe = 0.23140; %% Surface area of copper and Slot area %% Asc= 0.00019066; Aslot = ra4^2*pi; %% Endcap contact area %% $As1 = (2*pi*raframe*lendcap) + (pi*raframe^2);$ %% End length %% le = 0.0365;%% Short terms ra12= ra1^2-ra2^2; ra23= ra2^2-ra3^2; ra57= ra5^2-ra7^2; ra58= ra5^2-ra8^2; ra89= ra8^2-ra9^2; %% Contact Area of stator iron %% As2 = pi*(ra12);%% Contact area of stator teeth %% $As3 = pi^*(ra23) - Aslot^*n;$ %% Contact area of endwinding %% As4 = 2*pi*ra6*2*pi*rat;% As4 = 2*pi*ra6; hsum = (((ra5*2) - ra7*2)/(2));%% Contact area of rotor end winding %% $As5 = pi*(ra5^2 - ((2*ra5 - 2*(hsum))/2)^2);$ %% Contact area of rotor %% $As6 = pi*(((2*ra5-2*(hsum))/2)^2-(ra9^2));$ %% Contact area of end ring %% As7 = (2*pi*(ra57)+2*pi*ra5*le);%% Surface area of frame %% Aframe = pi*raframe^2 + 2*pi*raframe*lframe; %% Heat transfer coefficient %% %% Frame core contact coffi %% hcont = 400;%% Lamination stacking factor %% s = 0.97;%% Radial conductivity factor %%

fr = 2.5;%% Hotspot to mean temp %% w = 1.5: %% Lamination axial and iron conductivities %% kla = 4; klr = 39:%% Shaft steel and copper conductivities %% ks = 40; kc = 400;%% Slot liner and varnish conductivities %% ki = 0.8: kv = 0.8: %% Aluminium and air conductivities %% ka = 237; kair = 0.026; %% Convection bt frame and ambient %% h1 = 15.0952;%% rotating airgap film %% h2r = 96.8975;%% Stationary airgap and end cap films %% h2s = 65; h3s = 15.5;%% rotating endcap air film %% h3r = 83.0951;%losses %% pfys = 467.00;pfes = 76.00;pad = 298.00; $pcus = 619.00; \quad pcur = 563.00;$ %% Resistance %% r1 = 1/(2*h1*1.51*Aframe): r2 = 1/(pi*hcont*length*ra1);r3 = length/(6*pi*kla*ra12);r4 c= $4*ra1^2*ra2^2log(ra1/ra2)/ra12;$ r4_d= 4*pi*klr*length*s*ra12; $r4 = -1*(ra1^2 + ra2^2 - r4_c)/r4_d;$ r5 $a = 2 ra2^2 \log(ra1/ra2)/ra12;$ r5 b = (1-r5 a); $r5=r5_b/(2*pi*klr*length*s);$ $r6_a = 2*ra1^2*log(ra1/ra2)/ra12;$ $r6=(r6_a - 1)/(2*pi*klr*length*s);Wt = 0.0053;$ r7 = length*pt/(6*pi*kla*Wt*ra23); $r8 = pi*Wt*ra23/(klr*length*s*pt*(ra2-ra3)^2*n^2);$ $r9_a = 4*ra2^2*ra3^2*log(ra2/ra3)/ra23;$ $r9_b = -pt^*(ra2^2 + ra3^2 - r9_a);$ $r9=r9_b/(4*pi*klr*length*s*Wt*ra23);$ $r10_a = 2*ra3^2 \log(ra2/ra3)/ra23;$ r10 b= 2*pi*klr*length*s*Wt; $r10 = pt^{*}(1-r10 a)/r10 b;$ $r11_a = 2*ra2^2 \log(ra2/ra3)/ra23;$ r11_b= 2*pi*klr*length*s*Wt; $r11 = pt^{*}(r11_a - 1)/r11_b;$ $r12_a = 2*ti/(pi*ki*length*ra4*n);$ $r12_b = 1/(2*pi*kv*length*fr*n);$ $r12 = r12_a + r12_b;$ r13 = length/(6*kc*Asc*n);r14 a = 4*ti/(pi*ki*length*ra4*n);r14 b= 1/(pi*kv*length*fr*n); $r14 = r14_a + r14_b;$ r15 = 1/(pi*kv*length*fr*n);r16 = pt/(Wt*pi*ra3*length*h2r);r17 = pt/((pt-Wt)*pi*ra3*length*h2r);r18 = 1/(pi*ra5*length*h2r);r19 = lo*w/(n*Asc*kc); $r20 = w/(16*pi^2*rat*fr*kv);$

 $r21 = w^{ra6^{2}}(8^{pi}ra4^{2}lo^{fr}kv^{n});$ r22 = 1/(As1*h3r);r23 = 1/(As2*h3r);r24 = 1/(As3*h3r);r25 = 1/(1.5*As4*h3r);r26 = 1/(As5*h3r);r27 = 1/(As6*h3r); $r28_a = length/(6*pi*ka*(ra58));$ r28 b= le/(pi*ka*(ra57)); r28= r28 a + r28 b; r29_a= 4*ra5^2*ra8^2*log(ra5/ra8)/ra58; $r29_b = 4*pi*ka*length*ra58;$ $r29 = -1*(ra5^{2} + ra8^{2} - r29 a)/r29 b;$ $r30 = 2*ra8^{2}\log(ra5/ra8)/ra58;$ r30_b= 2*pi*ka*length; $r30 = (1-r30_a)/r30_b;$ $r31_a = 2*ra5^2*log(ra5/ra8)/ra58;$ r31_b= 2*pi*ka*length; $r31 = (r31_a - 1)/r31_b;$ r32 = length/(6*pi*kla*ra89);r33_a= 4*ra8^2*ra9^2*log(ra8/ra9)/ra89; r33_b= 4*pi*klr*length*s*ra89; $r33 = -1*(ra8^{2} + ra9^{2} - r33_a)/r33_b;$ r34_a= 2*ra9^2*log(ra8/ra9)/ra89; r34 b= 2*pi*klr*length*s; r34 = (1-r34 a)/r34 b; $r35 a = 2*ra8^{2}\log(ra8/ra9)/ra89;$ r35 b= 2*pi*klr*length*s; $r35 = (r35_a-1)/r35_b;$ $r36_a=1/(2*pi*ks*length);r36_b=/(2*pi*ks*ra9^2);$ r36 = r36 a + r36 b; $r37_a = 1/(4*pi*ks*lb);$ $r37_b = /(2*pi*ks*ra9^2);$ $r37 = r37_a + r37_b;$ %% Thermal conductances %% $g_{12} = 1/(r_2+r_4+r_5); g_{17} = 1/r_{22}; g_{110} = 1/r_{37};$ g11 = g12 + g110 + g17 + (1/r1); $g_{23} = 1/(r_{4}+r_{6}+r_{9}+r_{10});$ $g_{24} = 1/(r_{14}+r_{6}+r_{4});$ g25 = 1/(r4+r6+r10+r11+r16);g27 = 1/(r3+r23);g22 = g12 + g23 + g27 + g24;g34 = 1/(r8+r12);g35 = 1/(r9+r11+r16);g37 = 1/(r7+r24);g33 = g23 + g34 + g37 + g35;g45 = 1/(r15+r17);g46 = 1/(r13+r19);g44 = g24 + g34 + g45 + g46;g58 = 1/(r18+r29+r30);g55 = g35 + g45 + g58; r67 a = r20*r21/(r20+r21); $g67 = 1/(r67_a + r25);$ g66 = g46 + g67;g78 = 1/(r26 + r28);g79 = 1/(r32+r27);g77 = g17 + g27 + g37 + g67 + g78 + g79;g89 = 1/(r29+r31+r33+r34);g88 = g58 + g78 + g89; g910 = 1/(r33 + r35 + r36);g99 = g89 + g79 + g910; g1010 = g910 + g110;%% Matrix %% g = [g11 -g12 0 0 0 -g17 0 0 -g110;-g12 g22 -g23 -g24 0 0 -g27 0 0 0; $0 \ -g23 \ g33 \ -g34 \ -g35 \ 0 \ -g37 \ \ 0 \ \ 0 \ \ 0 \ ;$ 0 -g24-g34 g44 -g45 -g46 0 0 0 0; 0 -g35 -g45 g55 0 0 -g58 0 0; 0 $0 \quad 0 \quad -g46 \quad 0 \quad g66 \quad -g67 \quad 0 \quad 0 \quad 0 \quad ;$ 0 -g17 -g27 -g37 0 0 -g67 g77 -g78 -g79 0; 0 -g58 0 -g78 g88 -g89 0; 0 0 0 0 0 0 0 -g79 -g89 g99 -g910; 0 0

\n');

\n');

ht44

\n'):

-g110 0 0 0 0 0 0 0 -g910 g1010]; fprintf(f2,'%9.3f',ht12,ht17,ht110,ht11); p = [0; pfys/2; (pfes+0.3*pad)/2; %Heat flows around node 2 (ht12 is already defined) ((pcus*0.48+0.4*pad)/2); 0;ht23 = (t(2)-t(3))/(r4+r6+r9+r10);pcus*0.52/2: 0; pcur/2; 0.3*pad/2; 01: ht24 = (t(2)-t(4))/(r14+r6+r4);ht25 = (t(2)-t(5))/(r4+r6+r10+r11+r16);t=g|p;f_Row= [g11 -g12 0 0 0 0 -g17 0 0 -g110]; ht27 = (t(2)-t(7))/(r3+r23); $s_Row = [-g12 g22 - g23 - g24 0 0 - g27 0 0 0];$ ht22 = ht12 + ht23 + ht27 + ht24; $t_Row = [0 - g23 g33 - g34 - g35 0 - g37 0 0 0];$ fprintf(f2,'\n ht12 ht23 ht24 ht25 ht27 ht22 \n'); $fo_Row=[0 -g24 -g34 -g44 -g45 -g46 - 0 - 0 - 0 - 0];$ fprintf(f2,'%9.3f',ht12,ht23,ht24,ht25,ht27,ht22); fi_Row=[0 0 -g35 -g45 g55 0 0 -g58 0 0;]; %Heat flows arnd node 3 (ht23 is already defined) si_Row=[0 0 0 -g46 0 g66 -g67 0 0 0]; ht34 = (t(3)-t(4))/(r8+r12);se_Row=[-g17 -g27 -g37 0 0 -g67 g77 -g78 -g79 0]; ht35 = (t(3)-t(5))/(r9+r11+r16);ei_Row=[0 0 0 -g58 0 -g78 g88 -g89 0]; ht37 = (t(3)-t(7))/(r7+r24);ht33 = ht23 + ht34 + ht37 + ht35;ni_Row=[0 0 0 0 0 0 -g79 -g89 g99 -g910]; te_Row=[-g110 0 0 0 0 0 0 0 -g910 g1010]; fprintf(f2,'\n ht23 ht34 ht35 ht37 ht33 fprintf(f2,'\n r1 r2 r3 r4 r5 r6 \n'); fprintf(f2,'%9.3f',ht23,ht34,ht35,ht37,ht33); fprintf(f2,'%9.3f',r1,r2,r3,r4,r5,r6); %Heat flows arn node 4 (ht24 and ht34 defined) $fprintf(f2, \n r7)$ r8 r9 r10 r11 r12 \n'); ht45 = (t(4)-t(5))/(r15+r17);fprintf(f2,'%9.3f',r7,r8,r9,r10,r11,r12); ht46 = (t(4)-t(6))/(r13+r19);fprintf(f2,'\n r13 r14 r15 r16 r17 r18 \n'); ht44 = ht24 + ht34 + ht45 + ht46;fprintf(f2,'%9.3f',r13,r14,r15,r16,r17,r18); fprintf(f2,'\n ht24 ht34 ht45 ht46 fprintf(f2,'%9.3f',ht24,ht34,ht45,ht46,ht44); fprintf(f2,\\n r19 r20 r21 r22 r23 r24 \n'); fprintf(f2,'%9.3f',r19,r20,r21,r22,r23,r24); %Heat flows arnd node 5 (ht35 and ht45 are defined) r30 \n'); fprintf(f2,'\n r25 r26 r27 r28 ht58 = (t(5)-t(8))/(r18+r29+r30);r29 fprintf(f2,'%9.3f',r25,r26,r27,r28,r29,r30); ht55 = ht35 + ht45 + ht58; fprintf(f2,'\n ht35 ht45 ht58 ht55 fprintf(f2,'\n r31 r32 r33 r34 r35 r36 r37 \n'); fprintf(f2,'%9.3f',r31,r32,r33,r34,r35,r36,r37); fprintf(f2,'%9.3f',ht35,ht45,ht58,ht55); fprintf(f2, '30KW,440V,50HZ,3-Ph SCIM\n'); %Heat flows around node 6 (ht46 is already defined); $r67_a = r20*r21/(r20+r21);$ fprintf(f2, '\nOutput Data:'); ht67 = (t(6)-t(7))/(r67 a + r25);fprintf(f2, '\n-----'); ht66 = ht46 + ht67;fprintf(f2, '\n heat input values:'); $fprintf(f2, \ ht46 \ ht67 \ ht66 \ \)';$ fprintf(f2,'stator yoke fprintf(f2,'%9.3f',ht46,ht67,ht66); loss %5.1f, iron loss=%5.1f,additional loss%5.1f',pfys,pfes,pad); %Heat flows around node 7 (ht17, ht27, ht37, ht67 are fprintf(f2,'stator copper loss=%5.1f, rotor copper %already defined) loss=%5.1f',pcus,pcur); ht78 = (t(7)-t(8))/(r26 + r28);fprintf(f2, '\n-----conductivity matrix '); ht79 = (t(7)-t(9))/(r32+r27);fprintf(f2,'\n-----conductivitymatrix ');fprintf(f2,'\n'); ht77 = ht17 + ht27 + ht37 + ht67 + ht78 + ht79; fprintf(f2,'%6.1f',f_Row);fprintf(f2,'\n'); fprintf(f2,'\n ht17 ht27ht37 ht67 ht78 ht79 ht77 \n'); fprintf(f2,'%6.1f',s_Row);fprintf(f2,'\n'); fprintf(f2,'%9.3f',ht17,ht27,ht37,ht67,ht78,ht79,ht77); fprintf(f2, '%6.1f',t Row);fprintf(f2,'\n'); %Heat flows around node 8 (ht58, ht78 are defined) ht89 = (t(8)-t(9))/(r29+r31+r33+r34);fprintf(f2, '%6.1f',fo Row);fprintf(f2,'\n'); fprintf(f2, '%6.1f',fi Row);fprintf(f2,'\n'); ht88 = ht58 + ht78 + ht89: fprintf(f2, '%6.1f',si_Row);fprintf(f2,'\n'); $fprintf(f2, \ ht58 \ ht78 \ ht89 \ ht88 \ n');$ fprintf(f2, '%6.1f',se_Row);fprintf(f2,'\n'); fprintf(f2,'%9.3f',ht58,ht78,ht89,ht88); fprintf(f2, '%6.1f',ei_Row);fprintf(f2,'\n'); %Heat flows around node 9 (ht89, ht79 are defined) fprintf(f2, '%6.1f',ni Row);fprintf(f2,'\n'); ht910 = (t(9)-t(10))/(r33+r35+r36);fprintf(f2, '%6.1f',te_Row);fprintf(f2,'\n'); ht99 = ht89 + ht79 + ht910;fprintf(f2,'\n ht89 ht79 ht910 ht99 \n'); fprintf(f2, '\nTemperature rise in the nodes'); fprintf(f2,'%7.2f',t); fprintf(f2,'%9.3f',ht89,ht79,ht910,ht99); fprintf(f2, '\nHeat in puts in the nodes'); %Heat flows around node 9 fprintf(f2,'%7.2f',p); ht1010= ht910+ht110; %Heat flows around node 1 fprintf(f2,'\n ht910 ht110 ht1010 \n'); ht12 = (t(1)-t(2))/(r2+r4+r5);fprintf(f2,'%9.3f',ht910,ht110,ht1010); ht17 = (t(1)-t(7))/r22;fclose(f2); ht110 = (t(1)-t(10))/r37;ht11 = ht12 + ht110 + ht17 + (1/r1);fprintf(f2,'\n ht12 ht17 ht110 ht11 \n');